HDI Manufacturer | HDI Factory | High Quality HDI Products – chemhdi.com News Polyurethane catalyst SA603: One of the key technologies to promote the development of green chemistry

Polyurethane catalyst SA603: One of the key technologies to promote the development of green chemistry

Introduction

Polyurethane (PU) is a high-performance material widely used in construction, automobile, home, electronics and other fields. The choice of catalyst in its production process is crucial. Traditional polyurethane catalysts are mostly organotin compounds, such as dibutyltin dilaurate (DBTDL). Although these catalysts have efficient catalytic properties, they have serious environmental and health risks. With the global emphasis on environmental protection and sustainable development, the concept of green chemistry has gradually become popular, and the development of new environmentally friendly catalysts has become an important topic in the polyurethane industry.

SA603 is a polyurethane catalyst based on organic bismuth. Due to its excellent catalytic properties, low toxicity, environmental protection and biodegradability, it is considered to be one of the important technologies to promote the development of green chemistry. Compared with traditional organotin catalysts, SA603 can not only effectively reduce the emission of harmful substances during the production process, but also significantly improve the quality stability of the product and reduce the occurrence of side reactions. In addition, SA603 also has good heat resistance and storage stability, and can maintain efficient catalytic activity over a wide temperature range.

This article will discuss in detail the application of SA603 catalyst in polyurethane production, analyze its chemical structure, catalytic mechanism and performance characteristics, and combine relevant domestic and foreign literature to discuss its important role in promoting the development of green chemistry. The article will also introduce the product parameters, application fields, market prospects and future research directions of SA603, aiming to provide comprehensive technical reference for those engaged in polyurethane research and development and production.

Chemical structure and synthesis method of SA603 catalyst

SA603 is an organic bismuth-based polyurethane catalyst with a chemical name of Bismuth 2-ethylhexanoate. The molecular formula of the catalyst is C18H35BiO6 and the molecular weight is about 497.6 g/mol. The chemical structure of SA603 consists of a central bismuth atom and three 2-ethylhexanoate roots, forming a stable coordination compound. This structure imparts SA603 excellent catalytic properties and low toxicity, making it an ideal green catalyst.

Chemical Structure Analysis

The chemical structure of SA603 can be divided into two parts: the central metal bismuth and the ligand 2-ethylhexanoic acid. The bismuth element is located in Group 15 of the periodic table and has a high redox potential, which can effectively promote the reaction between isocyanate and polyol. 2-ethylhexanoic acid is a common organic carboxylic acid with a long alkyl chain, which can enhance the solubility and dispersion of the catalyst while reducing the aggregation of the catalyst in the reaction system, thereby improving the catalytic efficiency.

Chemical structure ScanDescription
Central Metal Bismuth As the core of the catalyst, bismuth atom can coordinate with isocyanate and polyols to promote the reaction.
2-ethylhexanoate Three 2-ethylhexanoate groups coordinate with bismuth atoms through oxygen atoms to form a stable six-membered ring structure.

Synthetic method

The synthesis of SA603 usually uses the direct reaction of metal bismuth and 2-ethylhexanoic acid. The specific steps are as follows:

  1. Raw material preparation: Mix the metal bismuth powder and 2-ethylhexanoic acid in a certain proportion, and add an appropriate amount of solvent (such as methyl or dichloromethane).
  2. Heating reaction: Heat the mixture to 100-150°C, stir the reaction for 2-4 hours, and coordinate the metal bismuth and 2-ethylhexanoic acid to form tri(2- ethylhexanoate)bis.
  3. Post-treatment: After the reaction is completed, the unreacted bismuth metal is removed by filtration, and the filtrate is concentrated to obtain the crude product of SA603 catalyst.
  4. Purification: Wash the crude product with anhydrous or other appropriate solvent to remove impurities, and then dry in vacuum to obtain a high-purity SA603 catalyst.

The relationship between structure and performance

The chemical structure of SA603 has an important influence on its catalytic properties. First, the high redox potential of the bismuth element allows SA603 to effectively promote the reaction between isocyanate and polyol, especially to have a significant promoting effect on the formation of hard segments. Secondly, the presence of 2-ethylhexanoate not only enhances the solubility of the catalyst, but also reduces the aggregation of the catalyst in the reaction system, thereby improving the catalytic efficiency. In addition, the long alkyl chain of 2-ethylhexanoate also imparts good compatibility and dispersion of SA603, allowing it to exhibit excellent catalytic properties in a variety of polyurethane systems.

Catalytic Mechanism of SA603 Catalyst

As an organic bismuth catalyst, SA603 mainly involves the coordination between bismuth ions and isocyanate and polyols. Research shows that the catalytic process of SA603 in polyurethane reaction can be divided into the following steps:

  1. Coordination: The bismuth ions in SA603 first coordinate with the N=C=O group in the isocyanate molecule, forming an unstable intermediate. At this time, bismuth ions pass throughThe coordination of its empty orbit with the oxygen atoms in the isocyanate reduces the reaction energy barrier of the isocyanate and promotes subsequent reactions.

  2. Nucleophilic Attack: Under the coordination of bismuth ions, the N=C=O bond in isocyanate molecules becomes more active and is susceptible to hydroxyl groups (-OH) in polyol molecules. nucleoprofessional attack. The oxygen atoms in the hydroxyl group bind to the carbon atoms in the isocyanate through covalent bonds to form a urethane bond.

  3. Deprotonation: During the formation of carbamate bonds, the hydrogen atoms in the hydroxyl group are trapped by bismuth ions to form a protonated bismuth ion. This process further reduces the activation energy of the reaction and accelerates the progress of the reaction.

  4. Regeneration cycle: Protonated bismuth ions then release protons and return to their initial state through interactions with other hydroxy molecules, and continue to participate in the next round of catalytic reactions. This cycle allows SA603 to maintain efficient catalytic activity for a longer period of time.

Kinetics study of catalytic reactions

In order to deeply understand the catalytic mechanism of SA603, the researchers conducted a detailed study of its catalytic reaction rate through kinetic experiments. According to the Arrhenius equation, the relationship between the catalytic reaction rate constant (k) and temperature (T) can be expressed as:

[ k = A cdot e^{-frac{E_a}{RT}} ]

Where A is the frequency factor, Ea is the activation energy, R is the gas constant, and T is the absolute temperature. By measuring the reaction rates at different temperatures, the researchers found that SA603 has a lower activation energy, indicating that it can significantly reduce the energy barrier of the polyurethane reaction and thus accelerate the reaction rate.

In addition, the researchers also monitored the polyurethane reaction process under SA603 catalyzed through technical means such as in-situ infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The results show that under the action of SA603, the reaction rate between isocyanate and polyol is significantly accelerated, especially under low temperature conditions, SA603 exhibits excellent catalytic performance.

Comparison with other catalysts

The catalytic mechanism of SA603 is different compared to traditional organotin catalysts such as DBTDL. DBTDL mainly promotes the reaction through coordination between tin ions and nitrogen atoms in isocyanate. However, the strong coordination ability of tin ions can lead to side reactions such as the autopolymerization of isocyanate, which affects product quality. In contrast, the bismuth ions of SA603 coordinate with the oxygen atoms in isocyanate, which avoids the occurrence of side reactions, can better control the reaction process and improve the product’sQuality stability.

Catalytic Type Catalytic Mechanism Pros Disadvantages
Organotin Catalyst Tin ions and N coordination High catalytic efficiency High toxicity and serious environmental pollution
Organic bismuth catalyst Bissium ions and O coordinate Low toxicity, environmentally friendly Catalytic efficiency is slightly lower

Application fields of SA603 catalyst

SA603 is a highly efficient and environmentally friendly polyurethane catalyst, widely used in many fields, especially in the construction, automobile, home, electronics and other industries. The following are the specific performance of SA603 in different application fields:

1. Building insulation materials

Polyurethane foam is an important part of building insulation materials, with excellent thermal insulation properties and lightweight properties. SA603 shows excellent catalytic properties in the production of polyurethane foams, which can significantly improve the foaming speed and density uniformity of the foam. In addition, the low toxicity and environmental protection of SA603 are also in line with the green development concept of the modern construction industry.

  • Application Cases: In a study in the United States, researchers used SA603 catalyst to prepare polyurethane hard foam plates. The results showed that SA603 not only shortened the hair compared to traditional organotin catalysts The foaming time also improves the mechanical strength and heat resistance of the foam. [1]
  • Advantages: SA603 can maintain efficient catalytic activity at lower temperatures, is suitable for large-scale industrial production, reducing energy consumption and production costs.

2. Automobile interior materials

Polyurethane materials are widely used in automotive interiors, such as seats, instrument panels, door panels and other components. SA603 catalyst can effectively promote the formation of polyurethane soft bubbles and microporous foams, improving the flexibility and comfort of the material. At the same time, the low volatility and low odor characteristics of SA603 make it particularly suitable for use in the interior environment, reducing the release of harmful substances and improving the driving experience.

  • Application Case: A German automakerIts new model uses polyurethane interior materials produced by SA603 catalyst. The test results show that the air quality in the car has been significantly improved and the VOC (volatile organic compound) content has been greatly reduced. [2]
  • Advantages: The low odor and low volatility of SA603 make it an ideal choice for automotive interior materials, comply with the requirements of the EU REACH regulations and protects the health of consumers.

3. Home Furniture

Polyurethane soft bubbles are widely used in home products such as sofas and mattresses. SA603 catalyst can effectively improve the elasticity and resilience of soft bubbles and extend the service life of the product. In addition, the environmental protection of SA603 also makes it popular in the home decoration market, meeting consumers’ demand for green homes.

  • Application Cases: A well-known Chinese furniture brand has introduced SA603 catalyst in its new product series. After being certified by a third-party testing agency, this series of products comply with national environmental protection standards and has a far low VOC emissions. At the industry average. [3]
  • Advantages: The application of SA603 in home furniture not only improves the quality of the product, but also complies with national environmental protection policies and enhances the market competitiveness of the enterprise.

4. Electronics

Polyurethane materials are also widely used in the manufacturing of electronic products, such as mobile phone case, computer keyboard, etc. SA603 catalyst can effectively promote the curing of polyurethane coatings and sealants, and improve the material’s wear resistance and impact resistance. In addition, the low toxicity and low odor characteristics of SA603 also make it particularly suitable for the production of precision electronic equipment, ensuring the safety and reliability of the product.

  • Application Cases: A Japanese electronics manufacturer uses a polyurethane coating produced by SA603 catalyst in its new generation of smartphones. The test results show that the coating’s wear resistance and UV resistance are shown. It has been significantly improved and the service life of the product has been extended. [4]
  • Advantages: The application of SA603 in electronic products not only improves the performance of the product, but also complies with the requirements of the RoHS (Directive for Restricting Hazardous Substances), ensuring the health and safety of consumers.

5. Other application areas

In addition to the above main application areas, SA603 also shows wide application prospects in other industries. For example, in the field of medical devices, SA603 catalysts can be used to produce medical polyurethane materials, such as catheters, infusion bags, etc., and their low toxicity and biocompatibility make them particularly suitable for the manufacture of medical supplies; in the field of sports equipment, SA603 catalysts can be used for the production of medical supplies; in the field of sports equipment, SA603 catalysts can be used for the production of In the production of polyurethane shoesbottom, protective gear, etc. to improve the wear resistance and comfort of the product.

Property characteristics of SA603 catalyst

SA603, as an organic bismuth catalyst, has many unique properties that make it outstanding in polyurethane production. The following are the main performance characteristics of SA603 and their comparison with traditional catalysts:

1. Low toxicity and environmental protection

The big advantage of SA603 is its low toxicity and environmental protection. Compared with traditional organotin catalysts such as DBTDL, SA603 contains almost no heavy metals and does not cause harm to human health and the environment. Research shows that SA603 will not release harmful gases during production and use, and its final products can be completely biodegradable, meeting the development requirements of green chemistry.

  • Toxicity Data: According to the test results of the US Environmental Protection Agency (EPA), the acute oral toxicity LD50 value of SA603 is greater than 5000 mg/kg, which is a low-toxic substance. In contrast, the acute oral toxicity LD50 value of DBTDL is only 100-200 mg/kg, which has a high toxicity risk. [5]
  • Environmental Impact: The production process of SA603 does not involve the use of toxic and harmful substances, and its final product can be completely biodegradable and will not cause pollution to the soil, water sources and other environments. In contrast, organotin catalysts will retain a large amount of heavy metals after use, and long-term accumulation will have a negative impact on the ecosystem.

2. Efficient catalytic performance

Although the catalytic efficiency of SA603 is slightly lower than that of the organotin catalyst, in practical applications, the catalytic performance it exhibits is sufficient to meet the requirements of most polyurethane production processes. Especially for certain special application fields, such as low-temperature rapid foaming, microporous foaming, etc., the catalytic effect of SA603 is even better than that of traditional catalysts.

  • Catalytic Efficiency: Studies have shown that the catalytic efficiency of SA603 in polyurethane reaction can reach more than 90%, and the reaction can be completed in a short time. In addition, the catalytic activity of SA603 is not affected by temperature and humidity and is suitable for various complex process conditions. [6]
  • Reaction Selectivity: SA603 has high reaction selectivity, which can effectively promote the reaction between isocyanate and polyol and reduce the occurrence of side reactions. This not only improves the quality stability of the product, but also reduces production costs.

3. Good compatibility and dispersion

The chemical structure of SA603 contains long alkyl chains, which imparts good compatibility and dispersion. This means that SA603 can be evenly distributed in a variety of polyurethane systems, avoiding the aggregation and precipitation of catalysts, thereby improving catalytic efficiency and product quality.

  • Compatibility: SA603 can be well compatible with a variety of polyurethane raw materials (such as MDI, TDI, polyols, etc.) and will not cause the raw materials to deteriorate or fail. This makes SA603 suitable for various types of polyurethane formulations and has a wide range of application prospects. [7]
  • Disperity: The long alkyl chain structure of SA603 enables it to be evenly dispersed in the reaction system, reducing the amount of catalyst used and reducing production costs. In addition, good dispersion also helps improve the appearance quality and physical properties of the product.

4. Excellent heat resistance and storage stability

SA603 has excellent heat resistance and storage stability, and can maintain efficient catalytic activity under high temperature environments. In addition, SA603 has a long storage life and is not prone to decomposition or deterioration, which is convenient for long-term storage and transportation.

  • Heat resistance: Studies have shown that SA603 can maintain stable catalytic activity in high temperature environments above 150°C and is suitable for high-temperature curing polyurethane production processes. In contrast, organotin catalysts are prone to decomposition at high temperatures, resulting in a decrease in catalytic efficiency. [8]
  • Storage Stability: The chemical structure of SA603 is stable and is not easy to react with moisture or other impurities in the air, so it has a long storage life. Experimental data show that after SA603 is stored at room temperature for two years, its catalytic performance has almost no change and is suitable for large-scale industrial production.

The market prospects and development trends of SA603 catalyst

With global emphasis on environmental protection and sustainable development, the concept of green chemistry has gradually become popular, and the demand for environmentally friendly catalysts is also increasing. As a low-toxic and environmentally friendly organic bismuth catalyst, SA603 has become one of the important development directions of the polyurethane industry with its excellent catalytic performance and wide application fields.

1. Market demand growth

In recent years, the scale of the global polyurethane market has been expanding, especially in the fields of construction, automobile, home and other fields, and the demand for polyurethane materials has continued to grow. According to data from market research institutions, the global polyurethane market size has reached about US$60 billion in 2022, and is expected to reach US$80 billion by 2028, with an annual compound growth rate of about 5%. [9] With the increase in the demand for polyurethane market, the demand for environmentally friendly catalysts has also increased. As an ideal alternative to traditional organic tin catalysts, SA603 has a broad market prospect.

  • Construction Industry: With the continuous improvement of building energy-saving standards in various countries, polyurethane foam, as an efficient insulation material, market demand continues to grow. The application of SA603 in building insulation materials not only improves the performance of the product, but also meets the standards of green buildings, and is favored by more and more construction companies.
  • Auto Industry: The rapid development of the automotive industry has promoted the widespread application of polyurethane materials in automotive interiors. The low odor and low volatile properties of SA603 make it particularly suitable for use in interior environments, comply with the requirements of the EU REACH regulations, and protects consumers’ health. With the rise of the electric vehicle market, SA603 has a broader prospect for its application in new energy vehicles.
  • Home Industry: Consumers’ demand for green homes is increasing, prompting home furnishing companies to increase the research and development and application of environmentally friendly materials. The application of SA603 in home furniture not only improves the quality of the product, but also complies with national environmental protection policies and enhances the market competitiveness of the enterprise.

2. Policy support and regulatory promotion

The governments of various countries have been paying more and more attention to environmental protection, and have successively issued a series of environmental protection regulations and policies to promote the development of green chemistry. For example, the EU’s REACH regulations put forward strict requirements on the production, use and sales of chemicals, limiting the use of heavy metal-containing catalysts; China’s “Air Pollution Prevention and Control Law” and “Water Pollution Prevention and Control Law” also provide emissions of industrial pollutants Strict control has been carried out and enterprises are encouraged to adopt environmentally friendly catalysts. The introduction of these policies provides broad market space for environmentally friendly catalysts such as SA603.

  • EU REACH Regulations: According to REACH regulations, all chemicals entering the EU market must be registered, evaluated and authorized, and catalysts containing heavy metals will face strict restrictions. As an environmentally friendly catalyst without heavy metals, SA603 complies with the requirements of REACH regulations and can be freely circulated in the European market.
  • China Environmental Protection Policy: The Chinese government attaches great importance to environmental protection and has successively issued a number of policies and regulations to promote the development of green chemistry. The low toxicity and environmental protection of SA603 make it an important choice for the transformation and upgrading of China’s polyurethane industry, and meet the requirements of national environmental protection policies.

3. Technological innovation and future development

With the advancement of technology, the technology of SA603 catalyst is constantly innovating and is expected to be applied in more fields in the future. For example, researchers are exploring the application of SA603 in bio-based polyurethanes to further improve the environmental performance of the materials; in addition, the combination technology of SA603 with other functional additives is also constantly developing, aiming to develop more high-performance Polyurethane material.

  • Bio-based polyurethane: Bio-based polyurethane is a new material prepared from renewable resources as raw materials and has good environmental protection performance. As an environmentally friendly catalyst, SA603 can effectively promote the synthesis of bio-based polyurethane, reduce dependence on petroleum-based raw materials, and meet the requirements of sustainable development.
  • Multifunctional Combination Technology: Researchers are developing SA603 compounding technology with other functional additives (such as flame retardants, plasticizers, etc.) to improve the comprehensive performance of polyurethane materials . For example, combining SA603 with flame retardant can produce polyurethane foam with good flame retardant properties, which is suitable for construction, transportation and other fields.

Conclusion

SA603, as a polyurethane catalyst based on organic bismuth, has become one of the important technologies to promote the development of green chemistry with its low toxicity, environmental protection, efficient catalytic performance and a wide range of application fields. Compared with traditional organic tin catalysts, SA603 can not only effectively reduce the emission of harmful substances during the production process, but also significantly improve the quality stability of the product and reduce the occurrence of side reactions. In addition, SA603 also has good heat resistance and storage stability, and can maintain efficient catalytic activity over a wide temperature range.

With the global high attention to environmental protection and sustainable development, the market demand of SA603 will continue to grow, especially in the fields of construction, automobile, home and other fields, with broad application prospects. Environmental protection regulations and policies issued by governments in various countries also provide a broad market space for SA603 and promotes its wide application in the polyurethane industry. In the future, with the continuous advancement of technological innovation, SA603 is expected to be applied in more fields and make greater contributions to the development of green chemistry.

In short, SA603 catalyst is not only an important breakthrough in the polyurethane industry, but also one of the key technologies for the development of green chemistry. By promoting and applying SA603, we can not only improve the performance and quality of polyurethane materials, but also make positive contributions to environmental protection and sustainable development.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.newtopchem.com/archives/category/products/page/ 20

Extended reading:https://www.bdmaee.net/butyltin-trichloridembtl/

Extended reading:https://www.cyclohexylamine.net/polycat-9-trisdimethylaminopropylamine/

Extended reading:https://www.newtopchem.com/archives/39605

Extended reading:https://www.bdmaee.net/dabco-rp205-addocat-9727p-high-efficiency-amine-catalyst/

Extended reading:https://www.newtopchem.com/archives/40283

Extended reading:https://www.cyclohexylamine.net/lupragen-dmi-polyurethane -gel-catalyst-polyurethane-gel-catalyst/

Extended reading:https://www.bdmaee.net/nt-cat-a-304-catalyst-cas1739-84-0-newtopchem/

Extended reading:https://www.cyclohexylamine .net/high-quality-cas-6425-39-4-22-dimorpholinodiethylhelf-dmdee-2-dimorpholinodiethylhe/

Extended reading:https://www.newtopchem.com/archives/1822

This article is from the Internet, does not represent the position of Toluene diisocyanate reproduced please specify the source.https://www.chemhdi.com/archives/41248

author:

Previous article
Next article
Contact Us

Contact us

+86 - 152 2121 6908

Online consultation: QQ交谈

E-mail: sales@newtopchem.com

Working hours: Monday to Friday, 9:00-17:30, closed on holidays
Follow wechat
Scan wechat and follow us

Scan wechat and follow us

Follow Weibo
Back to top
Home
E-mail
Products
Search
wpChatIcon
zh_CNChinese