HDI Manufacturer | HDI Factory | High Quality HDI Products – chemhdi.com News Effectiveness of Retarded amine Catalyst A400 in Multicomponent Polyurethane Systems

Effectiveness of Retarded amine Catalyst A400 in Multicomponent Polyurethane Systems

Performance of delayed amine catalyst A400 in multicomponent polyurethane systems

Introduction

Multicomponent polyurethane systems are widely used in modern industry, covering a variety of fields from building materials to automotive interiors. In these systems, the choice of catalyst has a crucial impact on the performance of the product, processing technology, and final application effect. As a highly efficient and environmentally friendly catalyst, the delayed amine catalyst A400 has been widely used in multi-component polyurethane systems in recent years. This article will discuss in detail the performance characteristics, application advantages and performance performance of the delayed amine catalyst A400 in different multicomponent polyurethane systems.

1. Basic characteristics of retardant amine catalyst A400

1.1 Chemical structure

Retardant amine catalyst A400 is an organic amine compound whose chemical structure contains multiple amine groups, which play a key catalytic role in the polyurethane reaction. The molecular structure design of A400 has high catalytic activity and good delay effect, which can maintain low activity at the beginning of the reaction and rapidly improve the catalytic efficiency later in the reaction.

1.2 Physical Properties

parameter name Value/Description
Appearance Colorless to light yellow liquid
Density (20°C) 1.02 g/cm³
Viscosity (25°C) 50 mPa·s
Boiling point 250°C
Flashpoint 120°C
Solution Easy soluble in water and organic solvents

1.3 Environmental performance

The delayed amine catalyst A400 does not contain heavy metals and harmful substances, and meets environmental protection requirements. Its low volatility and low toxicity make it safer and more reliable in industrial production.

2. Catalytic mechanism of delayed amine catalyst A400

2.1 Catalytic reaction process

In multicomponent polyurethane systems, the delay amine catalyst A400 mainly functions through the following steps:

  1. Initial phase: A400 maintains low catalytic activity at the beginning of the reaction to avoid excessive reaction causing system stickinessThe degree has risen sharply.
  2. Medium-term stage: As the reaction progresses, the catalytic activity of A400 gradually increases, promoting the reaction between isocyanate and polyol.
  3. Later stage: A400 achieves high catalytic activity in the late stage of the reaction, ensuring complete reaction and improving the cross-linking density and mechanical properties of the product.

2.2 Delay effect

The delay effect of A400 is mainly achieved by the amine groups in its molecular structure. These amine groups are partially shielded at the beginning of the reaction and gradually release as the reaction proceeds, thereby achieving a delay in catalytic activity.

3. Application of Retarded amine Catalyst A400 in Multicomponent Polyurethane Systems

3.1 Rigid polyurethane foam

Rough polyurethane foam is widely used in building insulation, cold chain transportation and other fields. The application advantages of A400 in rigid foam are mainly reflected in the following aspects:

  • Good Flowability: The delay effect of the A400 makes the foam have good fluidity in the early stage of foaming, making it easier to fill complex molds.
  • Uniform cell structure: The catalytic action of A400 makes the cell structure of the foam more uniform and improves the insulation performance.
  • Excellent mechanical properties: The high catalytic activity of A400 ensures the high crosslink density of the foam and improves the mechanical strength and durability of the foam.
Performance metrics Rough foam using A400 Rough foam without A400
Density (kg/m³) 35-45 40-50
Thermal conductivity (W/m·K) 0.020-0.025 0.025-0.030
Compressive Strength (kPa) 200-250 150-200

3.2 Soft polyurethane foam

Soft polyurethane foam is widely used in furniture, car seats and other fields. The application advantages of A400 in soft foam are mainly reflected in the following aspects:

  • Good poreability: The delay effect of A400 enables the foam to form a good pore structure during the foaming process, improving the breathability and comfort of the foam.
  • Excellent resilience: The high catalytic activity of A400 ensures the high crosslink density of the foam and improves the resilience and durability of the foam.
  • Low Odor: The low volatility and low toxicity of the A400 make the foam smell smaller and more environmentally friendly during use.
Performance metrics Soft foam using A400 Soft foam without A400
Density (kg/m³) 25-35 30-40
Rounce rate (%) 60-70 50-60
Breathability (L/s) 0.5-0.7 0.4-0.6

3.3 Polyurethane coating

Polyurethane coatings are widely used in construction, automobile, furniture and other fields. The application advantages of A400 in polyurethane coatings are mainly reflected in the following aspects:

  • Good leveling: The delay effect of the A400 makes the coating have good leveling during construction, making it easier to form a smooth coating.
  • Excellent adhesion: The high catalytic activity of A400 ensures the high crosslink density of the coating and improves the adhesion and durability of the coating.
  • Low VOC Emissions: The low volatility and low toxicity of A400 make the coating less VOC emissions and more environmentally friendly during use.
Performance metrics Polyurethane coating using A400 Polyurethane coating without A400
Drying time (h) 2-4 3-5
Adhesion (MPa) 5-7 4-6
VOC emissions (g/L) 50-70 70-90

3.4 Polyurethane Adhesive

Polyurethane adhesives are widely used in construction, automobile, packaging and other fields. The application advantages of A400 in polyurethane adhesives are mainly reflected in the following aspects:

  • Good initial adhesion: The delay effect of the A400 makes the adhesive have good initial adhesion in the early stage of construction, which is easy to position and fix.
  • Excellent final strength: The high catalytic activity of A400 ensures high crosslinking density of the adhesive and improves the final strength and durability of the adhesive.
  • Low Odor: The low volatility and low toxicity of A400 make the adhesive less odor and more environmentally friendly during use.
Performance metrics Use A400’s polyurethane adhesive Polyurethane adhesive not used with A400
First sticking time (min) 5-10 10-15
Finally Strength (MPa) 8-10 6-8
VOC emissions (g/L) 30-50 50-70

4. Processing technology of retardant amine catalyst A400

4.1 Formula Design

In multicomponent polyurethane systems, the amount of A400 added is usually 0.1%-0.5% (based on the weight of the polyol). The specific amount of addition needs to be adjusted according to actual application requirements.

4.2 Mixing process

A400 needs to be evenly dispersed in the polyol during mixing to ensure uniformity of the catalytic effect. The mixing temperature is usually controlled at 20-40°C to avoid high temperatures causing catalyst deactivation.

4.3 Reaction conditions

The reaction temperature of A400 is usually controlled at 20-80°C, and the specific temperature needs to be adjusted according to actual application requirements. The reaction time is usually 5-30 minutes, and the specific time needs to be adjusted according to actual application requirements.

5. Market prospects of delayed amine catalyst A400

With the continuous improvement of environmental protection requirements, the delay amine catalyst A400, as an efficient and environmentally friendly catalyst, has broad application prospects in multi-component polyurethane systems. In the future, with the continuous advancement of technology, the performance of the A400 will be further improved and the application field will be further expanded.

Conclusion

The delayed amine catalyst A400 shows excellent catalytic performance in a multicomponent polyurethane system, with good delay effect, high catalytic activity and environmental protection properties. Its application advantages in the fields of rigid foams, soft foams, coatings and adhesives are significant, and can effectively improve product performance and processing technology. With the increasing demand for environmentally friendly and efficient catalysts in the market, the A400’s application prospects will be broader.

Extended reading:https://www.cyclohexylamine.net/dabco-t-12-niax-d-22/

Extended reading:https://www.bdmaee.net/dabco-mb20-catalyst-cas-68007-43-3-evonik-germany/

Extended reading:https://www.newtopchem.com/archives/40487

Extended reading:https://www.cyclohexylamine.net/4-acetyl-morpholine-cas-1696-20-4-c6h11no2/

Extended reading:https://www.bdmaee.net/dibbutyltin-dichloride/

Extended reading:https://www.cyclohexylamine.net/high-efficiency-catalyst-pt303-polyurethane-catalyst-pt303/

Extended reading:https://www.bdmaee.net/dabco-8154-amine-catalyst-dabco-8154-catalyst-dabco-8154/

Extended reading:https://www.newtopchem.com/archives/category/products/page/126

Extended reading:https://www.morpholine.org/category/morpholine/page/8/

Extended reading:https://www.newtopchem.com/archives/1896

This article is from the Internet, does not represent the position of Toluene diisocyanate reproduced please specify the source.https://www.chemhdi.com/archives/42507

author:

Previous article
Next article
Contact Us

Contact us

+86 - 152 2121 6908

Online consultation: QQ交谈

E-mail: sales@newtopchem.com

Working hours: Monday to Friday, 9:00-17:30, closed on holidays
Follow wechat
Scan wechat and follow us

Scan wechat and follow us

Follow Weibo
Back to top
Home
E-mail
Products
Search
wpChatIcon